Properties of Matter 4 Question 1
3. A man grows into a giant such that his linear dimensions increase by a factor of 9 . Assuming that his density remains same, the stress in the leg will change by a factor of
(2017 Main)
(a) $\frac{1}{9}$
(b) 81
(c) $\frac{1}{81}$
(d) 9
Show Answer
Answer:
Correct Answer: 3. (a)
Solution:
- By ascent formula, we have surface tension,
$$ \begin{aligned} T & =\frac{r h g}{2} \times 10^{3} \frac{N}{m} \\ & =\frac{d h g}{4} \times 10^{3} \frac{N}{m} \end{aligned} $$
$$ \begin{aligned} & \Rightarrow \quad \frac{\Delta T}{T}=\frac{\Delta d}{d}+\frac{\Delta h}{h} \quad \text { [given, } g \text { is constant] } \\ & \text { So, percentage }=\frac{\Delta T}{T} \times 100=\left(\frac{\Delta d}{d}+\frac{\Delta h}{h}\right) \times 100 \end{aligned} $$
$$ \begin{aligned} & =\left(\frac{0.01 \times 10^{-2}}{1.25 \times 10^{-2}}+\frac{0.01 \times 10^{-2}}{1.45 \times 10^{-2}}\right) \times 100 \\ & =1.5 % \\ \therefore \quad \frac{\Delta T}{T} \times 100 & =1.5 % \end{aligned} $$