Properties of Matter 1 Question 12

12. The adjacent graph shows the extension $(\Delta l)$ of a wire of length $1 m$ suspended from the top of a roof at one end and with a load $w$ connected to the other end. If the cross-sectional area of the wire is $10^{-6} m^{2}$, calculate from the graph the Young’s modulus of the material of the wire.

(2003, 2M)

(a) $2 \times 10^{11} N / m^{2}$

(b) $2 \times 10^{-11} N / m^{2}$

(c) $3 \times 10^{12} N / m^{2}$

(d) $2 \times 10^{13} N / m^{2}$

Show Answer

Answer:

Correct Answer: 12. (a)

Solution:

  1. $\Delta l=\left(\frac{l}{Y A}\right) \cdot w$

i.e. graph is a straight line passing through origin (as shown in question also), the slope of which is $\frac{l}{Y A}$.

$$ \begin{array}{rlrl} \therefore \quad & \text { Slope } & =\left(\frac{l}{Y A}\right) \\ \therefore \quad & Y & =\left(\frac{l}{A}\right)\left(\frac{1}{\text { slope }}\right)=\left(\frac{1.0}{10^{-6}}\right) \frac{(80-20)}{(4-1) \times 10^{-4}} \\ & =2.0 \times 10^{11} N / m^{2} \end{array} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक