Optics 4 Question 19

20. A ray of light is incident on a prism $A B C$ of refractive index $\sqrt{3}$ as shown in figure.

$(2005,4$ M)

(a) Find the angle of incidence for which the deviation of light ray by the prism $A B C$ is minimum.

(b) By what angle the second identical prism must be rotated, so that the final ray suffers net minimum deviation.

Show Answer

Solution:

  1. (a) At minimum deviation, $r _1=r _2=30^{\circ}$

$\therefore$ From Snell’s law

$$ \begin{aligned} & \mu=\frac{\sin i _1}{\sin r _1} \text { or } \sqrt{3}=\frac{\sin i _1}{\sin 30^{\circ}} \\ \therefore \quad & \sin i _1=\frac{\sqrt{3}}{2} \text { or } i _1=60^{\circ} \end{aligned} $$

(b) In the position shown net deviation suffered by the ray of light should be minimum. Therefore, the second prism should be rotated by $60^{\circ}$ (anti-clockwise).



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक