Optics 4 Question 11

11. An isosceles prism of angle $120^{\circ}$ has a refractive index 1.44. Two parallel rays of monochromatic light enter the prism parallel to each other in air as shown. The rays emerging from the opposite face

$(1995,2 M)$

(a) are parallel to each other

(b) are diverging

(c) make an angle $2\left[\sin ^{-1}(0.72)-30^{\circ}\right]$ with each other

(d) make an angle $2 \sin ^{-1}(0.72)$ with each other

Show Answer

Solution:

  1. The diagramatic representation of the given problem is shown in figure.

From figure it follows that $\angle i=\angle A=30^{\circ}$

From Snell’s law, $n _1 \sin i=n _2 \sin r$

or $\quad \sin r=\frac{1.44 \sin 30^{\circ}}{1}=0.72$

Now, $\quad \angle \delta=\angle r-\angle i=\sin ^{-1}(0.72)-30^{\circ}$

$\therefore \quad \theta=2(\angle \delta)=2{\sin ^{-1}(0.72)-30^{\circ} }$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक