Modern Physics 5 Question 7

7. A fission reaction is given by ${ } _{92}^{236} U \rightarrow{ } _{54}^{140} Xe+{ } _{38}^{94} Sr+x+y$, where $x$ and $y$ are two particles. Considering ${ } _{92}^{236} U$ to be at rest, the kinetic energies of the products are denoted by $K _{Xe}$, $K _{Sr}, K _x(2 MeV)$ and $K _y(2 MeV)$, respectively. Let the binding energies per nucleon of ${ } _{92}^{236} U,{ } _{54}^{140} Xe$ and ${ } _{38}^{94} Sr$ be 7.5 $MeV$, 8.5 MeV and 8.5 MeV, respectively. Considering different conservation laws, the correct options is/are

(2015 Adv.)

(a) $x=n, y=n, K _{Sr}=129 MeV, K _{X e}=86 MeV$

(b) $x=p, y=e^{-}, K _{Sr}=129 MeV, K _{X e}=86 MeV$

(c) $x=p, y=n, K _{Sr}=129 MeV, K _{Xe}=86 MeV$

(d) $x=n, y=n, K _{Sr}=86 MeV, K _{X _e}=129 MeV$

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. From conservation laws of mass number and atomic number, we can say that $x=n, y=n$

$$ \left(x={ } _0^{1} n, y={ } _0^{1} n\right) $$

$\therefore$ Only (a) and (d) options may be correct.

From conservation of momentum, $\left|P _{xe}\right|=\left|P _{sr}\right|$

$$ \begin{aligned} & \text { From } \quad K=\frac{P^{2}}{2 m} \Rightarrow K \propto \frac{1}{m} \\ & \frac{K _{Sr}}{K _{xe}}=\frac{m _{xe}}{m _{Sr}} \\ & \therefore \quad K _{Sr}=129 MeV, K _{xe}=86 MeV \end{aligned} $$

NOTE There is no need of finding total energy released in the process.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक