Modern Physics 2 Question 4

4. The electric field of light wave is given as E=103cos2πx5×1072π×6×1014tx^NC1. This light falls on a metal plate of work function 2eV. The stopping potential of the photoelectrons is

Given, E( in eV)=12375λ( in \AA)

(Main 2019, 9 April I)

(a) 0.48V

(b) 0.72V

(c) 2.0V

(d) 2.48V

Show Answer

Answer:

Correct Answer: 4. (a)

5. (c) 6. (d) 7. (a) 8. (a)
9. (c) 10. (c) 11. (b) 12. (a)
13. (b) 14. (a) 15. (b) 16. (a)
17. (a) 18. (c) 19. (b) 20. (a, c)
21. (a, c) 22. (a, b, c) 23. (b, d) 24. (a, b, c)
25. (c, d) 26.. 27.7 28. Frequency
29. Question is incomplete 30.F
32. (a) 5×107 (b) 2×103N/C (c) 23eV

Solution:

  1. Given, E=103cos2πx5×1072π×6×1014tx^NC1

By comparing it with the general equation of electric field of light, i.e.

E=E0cos(kxωt)x^, we get k=2π5×107=2π/λ

(from definition, k=2π/λ )

λ=5×107m=5000\AA

Or

The value of λ can also be calculated as, after comparing the given equation of E with standard equation, we get

ω=6×1014×2πν=6×1014[2πν=ω] As, c=νλλ=cν=3×1086×1014=5×107m=5000\AA

According to Einstein’s equation for photoelectric effect, i.e.,

h˙cλφ=(KE)max=eV0

For photon, substituting the given values,

E=hcλ=12375eVλhcλ=123755000eV [using Eq. (i)]. 

Now, substituting the values from Eq. (iii) in Eq. (ii), we get

123755000eV2eV=eV02.475eV2eV=eV0 or V0=2.475V2V=0.475VV00.48V



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक