Magnetics 1 Question 15

15. A proton, a deutron and an $\alpha$-particle having the same kinetic energy are moving in circular trajectories in a constant magnetic field. If $r _p, r _d$ and $r _{\alpha}$ denote, respectively the radii of the trajectories of these particles, then

(1997, 1M)

(a) $r _{\alpha}=r _p<r _d$

(b) $r _{\alpha}>r _d>r _p$

(c) $r _{\alpha}=r _d>r _p$

(d) $r _p=r _d=r _{\alpha}$

Show Answer

Answer:

Correct Answer: 15. (a)

Solution:

  1. Radius of the circular path is given by

$$ r=\frac{m v}{B q}=\frac{\sqrt{2 K m}}{B q} $$

Here, $K$ is the kinetic energy to the particle.

Therefore, $r \propto \frac{\sqrt{m}}{q}$ if $K$ and $B$ are same.

$\therefore \quad r _p: r _d: r _{\alpha}=\frac{\sqrt{1}}{1}: \frac{\sqrt{2}}{1}: \frac{\sqrt{4}}{2}=1: \sqrt{2}: 1$

Hence,

$$ r _{\alpha}=r _p<r _d $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक