Magnetics 1 Question 1

1. An electron moving along the $X$-axis with an initial energy of $100 eV$, enters a region of magnetic field $\mathbf{B}=\left(1.5 \times 10^{-3} T\right) \hat{\mathbf{k}}$ at $S$ (see figure). The field extends between $x=0$ and $x=2 cm$. The electron is detected at the point $Q$ on a screen placed $8 cm$ away from the point $S$. The distance $d$ between $P$ and $Q$ (on the screen) is

(Take, electron’s charge $=1.6 \times 10^{-19} C$, mass of electron $=9.1 \times 10^{-31} kg$ )

(2019 Main, 12 April II)

(a) $11.65 cm$

(b) $12.87 cm$

(c) $1.22 cm$

(d) $2.25 cm$

Show Answer

Answer:

Correct Answer: 1. (*)

Solution:

When electron enters the region of magnetic field, it experiences a Lorentz force which rotates electron in a circular path of radius $R$.

So, Lorentz force acts like a centripetal force and we have

$$ \frac{m v^{2}}{R}=B q v $$

where, $m=$ mass of electron,

$q=$ charge of electron, $v=$ speed of electron,

$R=$ radius of path,

and $B=$ magnetic field intensity.

Radius of path of electron,

$$ R=\frac{m v}{B q} $$

Now, from geometry of given arrangement, comparing values of $\tan \theta$, we have

$$ \begin{array}{rlrl} \tan \theta=\frac{L}{R} & =\frac{d}{D} \Rightarrow d=\frac{L D}{R}=\frac{B q L D}{m v} & \\ \Rightarrow \quad d & =\frac{B q L D}{\sqrt{2 m k}} \quad[\because m v=\sqrt{2 m k}] \end{array} $$

where, $k=$ kinetic energy of electron

Here, $B=1.5 \times 10^{-3} T$,

$q=1.6 \times 10^{-19} C, L=2 \times 10^{-2} m, D=6 \times 10^{-2} m$,

$m=9.1 \times 10^{-31} kg, k=100 \times 1.6 \times 10^{-19} J$

So, $d=\frac{\left(1.5 \times 10^{-3} \times 1.6 \times 10^{-19} \times 2 \times 10^{-2} \times 6 \times 10^{-2}\right)}{\sqrt{\left(2 \times 9.1 \times 10^{-31} \times 100 \times 1.6 \times 10^{-19}\right)}}$

$=\frac{28.8 \times 10^{-26}}{\sqrt{29.12 \times 10^{-48}}}=\frac{28.8 \times 10^{-26}}{5.39 \times 10^{-24}}=5.34 \times 10^{-2} m$

$=5.34 cm$

No option is matching.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक