Laws of Motion 3 Question 21

22. A block of mass $m$ rests on a horizontal floor with which it has a coefficient of static friction $\mu$. It is desired to make the body move by applying the minimum possible force $F$. Find the magnitude of $F$ and the direction in which it has to be applied.

(1987, 7M)

Show Answer

Answer:

Correct Answer: 22. $m g \sin \theta, \theta=\tan ^{-1}(\mu)$ from horizontal

Solution:

  1. Let $F$ be applied at angle $\theta$ as shown in figure.

Normal reaction in this case will be,

$$ N=m g-F \sin \theta $$

The limiting friction is therefore

$$ f _L=\mu N=\mu(m g-F \sin \theta) $$

For the block to move,

$$ \begin{aligned} F \cos \theta & =f _L=\mu(m g-F \sin \theta) \\ \text { or } \quad F & =\frac{\mu m g}{\cos \theta+\mu \sin \theta} \end{aligned} $$

For $F$ to be minimum, denominator should be maximum.

$$ \begin{aligned} \text { or } & & \frac{d}{d \theta}(\cos \theta+\mu \sin \theta) & =0 \\ \text { or } & & \sin \theta+\mu \cos \theta & =0 \\ \text { or } & & \tan \theta=\mu \text { or } \theta & =\tan ^{-1}(\mu) \end{aligned} $$

Substituting this value of $\theta$ in Eq. (i), we get

$$ F _{\min }=m g \sin \theta $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक