Laws of Motion 3 Question 1

1. Two blocks $A$ and $B$ of masses $m _A=1 kg$ and $m _B=3 kg$ are kept on the table as shown in figure. The coefficient of friction between $A$ and $B$ is 0.2 and between $B$ and the surface of the table is also 0.2 . The maximum force $F$ that can be applied on $B$

horizontally, so that the block $A$ does not slide over the block $B$ is

[Take, $g=10 m / s^{2}$ ]

(2019 Main, 10 April II)

(a) $12 N$

(b) $16 N$

(c) $8 N$

(d) $40 N$

Objective Question II (One or more correct option)

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Acceleration $a$ of system of blocks $A$ and $B$ is

$$ a=\frac{\text { Net force }}{\text { Total mass }}=\frac{F-f _1}{m _A+m _B} $$

where, $f _1=$ friction between $B$ and the surface

$$ =\mu\left(m _A+m _B\right) g $$

So,

$$ a=\frac{F-\mu\left(m _A+m _B\right) g}{\left(m _A+m _B\right)} $$

Here, $\mu=0.2, m _A=1 kg, m _B=3 kg, g=10 ms^{-2}$

Substituting the above values in Eq. (i), we have

$$ \begin{aligned} & a=\frac{F-0.2(1+3) \times 10}{1+3} \\ & a=\frac{F-8}{4} \end{aligned} $$

Due to acceleration of block $B$, a pseudo force $F^{\prime}$ acts on $A$.

This force $F^{\prime}$ is given by $F^{\prime}=m _A a$

where, $a$ is acceleration of $A$ and $B$ caused by net force acting on $B$.

For $A$ to slide over $B$; pseudo force on $A$, i.e. $F^{\prime}$ must be greater than friction between $A$ and $B$.

$$ \Rightarrow \quad m _A a \geq f _2 $$

We consider limiting case,

$$ \begin{aligned} & m _A a & =f _2 \\ \Rightarrow \quad & m _A a & =\mu\left(m _A\right) g \\ \Rightarrow \quad & & =\mu g=0.2 \times 10=2 ms^{-2} \end{aligned} $$

Putting the value of $a$ from Eq. (iii) into Eq. (ii), we get

$$ \begin{aligned} \frac{F-8}{4} & =2 \\ \therefore \quad F & =16 N \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक