Kinematics 6 Question 1

1. Let |A1|=3,|A2|=5 and |A1+A2|=5. The value of (2A1+3A2)(3A12A2) is

(a) -106.5

(b) -112.5

(c) 9.5

(d) -118.5

(2019 Main, 08 April II)

Show Answer

Answer:

Correct Answer: 1. (d)

Solution:

  1. For vector A1+A2, we have

|A1+A2|2=(A1+A2)(A1+A2)[xx=|x|2]|A1+A2|2=|A1|2+|A2|2+2A1A2

Given, |A1|=3,|A2|=5 and |A+A2|=5

So, we have

(5)2=9+25+2A1A2A1A2=92 Now, (2A1+3A2)(3A12A2)=6|A1|24A1A2+9A1A26|A2|2=6|A1|26|A2|2+5A1A2

Substituting values, we have

(2A1+3A2)(3A12A2)=6(9)6(25)+592=118.5

Alternate Solution

As we know, |A1+A2| can also be written as

|A+A2|=|A1|2+|A2|2+2|A1||A2|cosθ

Substituting the given values, we get

5=(3)2+(5)2+2×3×5cosθ or cosθ=92×3×5=310 So, (2A1+3A2)(3A12A2)=6|A1|26|A2|2+5A1A2=6|A1|26|A2|2+5|A1|A2|cosθ=6×96×25+5×2×3×310=118.5



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक