Heat and Thermodynamics 5 Question 2

2. A sample of an ideal gas is taken through the cyclic process $a b c a$ as shown in the figure. The change in the internal energy of the gas along the path $c a$ is $-180 J$. The gas absorbs $250 J$ of heat along the path $a b$ and $60 J$ along the path $b c$. The work done by the gas along the path $a b c$ is

(2019 Main, 12 April I)

(a) $120 J$

(b) $130 J$

(c) $100 J$

(d) $140 J$

Show Answer

Solution:

  1. Key Idea In $p-V$ curve, work done $d W$, change in internal energy $\Delta U$ and heat absorbed $\Delta Q$ are connected with first law of thermodynamics, i.e.

$$ \Delta Q=\Delta U+d W $$

and total change in internal energy in complete cycle is always zero. Using this equation in different part of the curve, we can solve the

given problem.

In Process $a \rightarrow b$

$$ \begin{aligned} \text { Given, } & & \Delta Q _{a b} & =250 J \\ & \therefore & 250 J & =\Delta U _{a b}+d W _{a b} \end{aligned} $$

In Process $b \rightarrow c$

$$ \text { Given, } \quad \Delta Q _{b c}=60 J $$

Also, $V$ is constant, so $d V=0$

$$ \begin{array}{rlrl} \Rightarrow & d W _{b c} & =p(d V) _{b c}=0 \\ & \therefore & 60 J & =\Delta U _{b c}+0 \\ \Rightarrow & & \Delta U _{b c} & =60 J \end{array} $$

In Process $c \rightarrow a$

Given, $\quad \Delta U _{c a}=-180 J$

Now, for complete cycle,

$$ \Delta U _{a b c a}=\Delta U _{a b}+\Delta U _{b c}+\Delta U _{c a}=0 $$

From Eqs. (iii), (iv) and (v), we get

$$ \begin{aligned} \Delta U _{a b} & =-\Delta U _{b c}-\Delta U _{c a} \\ \Delta U _{a b} & =-60+180=120 J \end{aligned} $$

From Eq. (ii), we get

$$ \begin{array}{rlrl} & & 250 J & =120 J+d W _{a b} \\ \Rightarrow \quad & d W _{a b} & =130 J \end{array} $$

From Eqs. (i) and (vii), we get

Work done by the gas along the path $a b c$,

$$ \begin{aligned} d W _{a b c} & =d W _{a b}+d W _{b c} \\ & =130 J+0 K \\ \Rightarrow \quad d W _{a b c} & =130 J \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक