Gravitation 2 Question 9

12. The masses and radii of the Earth and the Moon are $M _1, R _1$ and $M _2, R _2$ respectively. Their centres are a distance $d$ apart.

The minimum speed with which a particle of mass $m$ should be projected from a point midway between the two centres so as to escape to infinity is

(1988, 2M)

Integer Answer Type Questions

Show Answer

Answer:

Correct Answer: 12. 2

Solution:

  1. Total mechanical energy of mass $m$ at a point midway between two centres is

$$ E=-\frac{G M _1 m}{d / 2}-\frac{G M _2 m}{d / 2}=-\frac{2 G m}{d}\left(M _1+M _2\right) $$

Binding energy $=\frac{2 G m}{d}\left(M _1+M _2\right)$

Kinetic energy required to escape the mass to infinity is,

$$ \begin{aligned} \frac{1}{2} m v _e^{2} & =\frac{2 G m}{d}\left(M _1+M _2\right) \\ \therefore \quad v _e & =2 \sqrt{\frac{G\left(M _1+M _2\right)}{d}} \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक