Gravitation 1 Question 4

7. The magnitudes of the gravitational field at distance $r _1$ and $r _2$ from the centre of a uniform sphere of radius $R$ and mass $M$ are $F _1$ and $F _2$, respectively. Then

$(1994,2 M)$

(a) $\frac{F _1}{F _2}=\frac{r _1}{r _2}$ if $r _1<R$ and $r _2<R$

(b) $\frac{F _1}{F _2}=\frac{r _2^{2}}{r _1^{2}}$ if $r _1>R$ and $r _2>R$

(c) $\frac{F _1}{F _2}=\frac{r _1^{3}}{r _2^{3}}$ if $r _1<R$ and $r _2<R$

(d) $\frac{F _1}{F _2}=\frac{r _1^{2}}{r _2^{2}}$ if $r _1<R$ and $r _2<R$

Fill in the Blank

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. For $r \leq R, F=\frac{G M}{R^{3}} \cdot r$

or $F \propto r$

$$ \frac{F _1}{F _2}=\frac{r _1}{r _2} \quad \text { for } \quad r _1<R $$

and $\quad r _2<R$

and for $r \geq R, F=\frac{G M}{r^{2}}$

or $\quad F \propto \frac{1}{r^{2}}$

i.e. $\quad \frac{F _1}{F _2}=\frac{r _2^{2}}{r _1^{2}}$ for $r _1>R$

and $\quad r _2>R$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक