Electrostatics 5 Question 5

6. A capacitor with capacitance $5 \mu F$ is charged to $5 \mu C$. If the plates are pulled apart to reduce the capacitance to $2 \mu F$, how much work is done?

(a) $6.25 \times 10^{-6} J$

(b) $2.16 \times 10^{-6} J$

(c) $2.55 \times 10^{-6} J$

(d) $3.75 \times 10^{-6} J$

(Main 2019, 9 April I)

Show Answer

Answer:

Correct Answer: 6. (b, d)

Solution:

  1. Potential energy stored in a capacitor is

$$ U=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C} $$

So, initial energy of the capacitor, $U _i=\frac{1}{2} Q^{2} / C _1$

Final energy of the capacitor, $U _f=\frac{1}{2} Q^{2} / C _2$

As we know, work done, $W=\Delta U=U _f-U _i$

$$ =\frac{1}{2} Q^{2} \frac{1}{C _2}-\frac{1}{C _1} $$

Here, $\quad Q=5 \mu C=5 \times 10^{-6} C$,

$C _1=5 \mu F=5 \times 10^{-6} F$,

$C _2=2 \mu F=2 \times 10^{-6} F$

$\Rightarrow \quad \Delta U=\frac{1}{2} \times\left(5 \times 10^{-6}\right)^{2} \frac{1}{2 \times 10^{-6}}-\frac{1}{5 \times 10^{-6}}$

$$ \begin{aligned} & =\frac{1}{2} \times \frac{5 \times 5 \times 10^{-12}}{10^{-6}} \times \frac{3}{10} \\ & =\frac{25 \times 3}{20} \times 10^{-6} J \\ \Rightarrow \quad \Delta U & =3.75 \times 10^{-6} J \end{aligned} $$

$\therefore$ Work done in reducing the capacitance from $5 \mu F$ to $2 \mu F$ by pulling plates of capacitor apart is $3.75 \times 10^{-6} J$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक