Electrostatics 4 Question 7

7. An electric dipole has a fixed dipole moment $\mathbf{P}$, which makes angle $\theta$ with respect to $X$-axis. When subjected to an electric field $\mathbf{E} _1=E \hat{\mathbf{i}}$, it experiences a torque $\mathbf{T} _1=\pi \hat{\mathbf{k}}$. When subjected to another electric field $\mathbf{E} _2=\sqrt{3} E _1 \hat{\mathbf{j}}$, it experiences a torque $\mathbf{T} _2=-\mathbf{T} _1$. The angle $\theta$ is

(2017 Main)

(a) $45^{\circ}$

(b) $60^{\circ}$

(c) $90^{\circ}$

(d) $30^{\circ}$

Show Answer

Solution:

Torque applied on a dipole, $\tau=p E \sin \theta$

where, $\theta=$ angle between axis of dipole and electric field.

For electric field $E _1=E \hat{\mathbf{i}}$.

it means field is directed along positive $X$ direction, so angle between dipole and field will remain $\theta$, therefore torque in this direction

$$ E _1=p E _1 \sin \theta $$

In electric field $E _2=\sqrt{3} E \hat{j}$, it means field is directed along positive $Y$-axis, so angle between dipole and field will be $90-\theta$

Torque in this direction $T _2=p E \sin \left(90^{\circ}-\theta\right)$.

$$ =p \sqrt{3} E _1 \cos \theta $$

According to question $\tau _2=-\tau _1 \Rightarrow\left|\tau _2\right|=\left|\tau _1\right|$

$$ \begin{aligned} & \therefore \quad p E _1 \sin \theta=p \sqrt{3} E _1 \cos \theta \\ & \tan \theta=\sqrt{3} \Rightarrow \tan \theta=\tan 60^{\circ} \\ & \therefore \quad \theta=60^{\circ} \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक