Electrostatics 1 Question 17

18. An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho$. It has a spherical cavity of radius $R / 2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2 R$ from the axis of the cylinder, is given by the expression $\frac{23 \rho R}{16 k \varepsilon _0}$.

The value of $k$ is

(2012)

Show Answer

Answer:

Correct Answer: 18. (b)

Solution:

  1. Volume of cylinder per unit length $(l=1)$ is

$$ V=\pi R^{2} l=\left(\pi R^{2}\right) $$

$\therefore$ Charge per unit length,

$\lambda=($ Volume per unit length $) \times($ Volume charge density $)$

$=\left(\pi R^{2} \rho\right)$

Now at $P$

$R=$ Remaining portion

$$ E _R=E _T-E _C $$

$T=$ Total portion and

$C=$ cavity

$$ \begin{aligned} \therefore \quad E _R & =\frac{\lambda}{2 \pi \varepsilon _0(2 R)}-\frac{1}{4 \pi \varepsilon _0} \frac{Q}{(2 R)^{2}} \\ Q & =\text { charge on sphere } \\ & =\frac{4}{3} \pi \quad \frac{R^{3}}{2} \quad \rho=\frac{\pi R^{3} \rho}{6} \end{aligned} $$

Substituting the values, we have

$$ \begin{aligned} E _R & =\frac{\left(\pi R^{2} \rho\right)}{4 \pi \varepsilon _0 R}-\frac{1}{4 \pi \varepsilon _0} \cdot \frac{\left(\pi R^{3} \rho / 6\right)}{4 R^{2}} \\ & =\frac{23 \rho R}{96 \varepsilon _0}=\frac{23 \rho R}{(16)(6) \varepsilon _0} \\ \therefore \quad k & =6 \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक