Vectors 5 Question 4

4. Let p,q,r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies the equation

p×[(xq)×p]+q×[(xr)×q]+r×[(xp)×r]=0, then x is given by 

(a) 12(p+q2r)

(b) 12(p+q+r)

(c) 13(p+q+r)

(d) 13(2p+qr)

Show Answer

Answer:

Correct Answer: 4. (b)

Solution:

  1. Since, p,q,r are mutually perpendicular vectors of same magnitude, so let us consider

|p|=|q|=|r|=λ and pq=qr=rp=0

Given, p×(xq)×p+q×(xr)×q

+r×(xp)×r=0

(pp)(xq)p(xq)p+(qq)(xr)

q(xr)q+(rr)(xp)r(xp)r=0

xpp)+(qq)+(rr)(pp)q

(qq)r(rr)p=(xp)p+(xq)q+(xr)r

3x|λ|2(p+q+r)|λ|2=(xp)p

+(xq)q+(xr)r

Taking dot of Eq. (ii) with p, we get

3(xp)|λ|2|λ|4=(xp)|λ|2xp=12|λ|2

Similarly, taking dot of Eq. (ii) with q and r respectively, we get

xq=|λ|22=xr

Eq. (ii) becomes

3x|λ|2(p+q+r)|λ|2=|λ|22(p+q+r)3x=12(p+q+r)+(p+q+r)x=12(p+q+r)



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक