Vectors 5 Question 13

13. Let a,b and c be non-coplanar unit vectors, equally inclined to one another at an angle θ. If a×b+b×c=pa+qb+rc, then find scalars p,q and r in terms of θ.

(1997, 5M)

Show Answer

Solution:

  1. Since, a,b,c are non-coplanar vectors.

[abc]0  Also, a×b+b×c=pa+qb+rc

Taking dot product with a,b and c respectively both sides, we get

p+qcosθ+rcosθ=[abc]pcosθ+q+rcosθ=0

and pcosθ+qcosθ+r=[abc]

On adding above equations,

p+q+r=2[abc]2cosθ+1

On multiplying Eq. (iv) by cosθ and subtracting Eq. (i), we get

p(cosθ1)=2[abc]cosθ2cosθ+1[abc]

p=[abc](1cosθ)(2cosθ+1) Similarly, q=2[abc]cosθ(1+2cosθ)(1cosθ)

and

r=[abc](1+2cosθ)(1cosθ)

Now, [abc]2=|aaabac babbbc cacbcc|=|1cosθcosθ cosθ1cosθ cosθcosθ1|

Applying R1R1+R2+R3

=(1+2cosθ)|111cosθ1cosθcosθcosθ1|

Applying C2C2C1,C3C3C1

=(1+2cosθ)|100cosθ1cosθ0cosθ01cosθ|

=(1+2cosθ)(1cosθ)2[abc]=(1+2cosθ)(1cosθ)p=11+2cosθ,q=2cosθ1+2cosθ and r=11+2cosθ



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक