Vectors 3 Question 3

3. If a,b,c and d are the unit vectors such that (a×b)(c×d)=1 and ac=12, then

(2009)

(a) a,b,c are non-coplanar

(b) a,b,d are non-coplanar

(c) b,d are non-parallel

(d) a,d are parallel and b,c are parallel

Show Answer

Answer:

Correct Answer: 3. (c)

Solution:

  1. Let angle between a and b be θ1,c and d be θ2 and a×b and b×d be θ.

Since, (a×b)(c×d)=1

sinθ1sinθ2cosθ=1

θ1=90,θ2=90,θ=0

ab,cd,(a×b)|(c×d)

So, a×b=k(c×d) and a×b=k(c×d)

(a×b)c=k(c×d)c

an d(a×b)d=k(c×d)d

[abc]=0 and [abd]=0

a,b,c and a,b,d are coplanar vectors, so options (a) and (b) are incorrect.

Let b|db=±d

 As (a×b)(c×d)=1(a×b)(c×b)=±1[a×bcb]=±1[cba×b]=±1c[b×(a×b)]=±1c[a(ba)b]=±1ca=±1[ab=0]

which is a contradiction, so option (c) is correct.

Let option (d) is correct.

d=±a and c=±b As (a×b)(c×d)=1(a×b)(b×a)=±1

which is a contradiction, so option (d) is incorrect. Alternatively, options (c) and (d) may be observed from the given figure.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक