Vectors 2 Question 9
9. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be unit vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$. Which one of the following is correct?
(2007, 3M)
(a) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
(b) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$
(c) $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
(d) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ are mutually perpendicular
Show Answer
Answer:
Correct Answer: 9. (b)
Solution:
- Since, $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are unit vectors and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$, then
$\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ represent an equilateral triangle.
$$ \therefore \quad \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}} $$