Vectors 2 Question 22

22. For any two vectors u and v, prove that

(i) |uv|2+|u×v|2=|u|2|v|2

(ii) (1+|u|2)(1+|v|2)=|1uv|2+|u+v+(u×v)|2

(1998,8M)

Show Answer

Solution:

  1. (i) Since, uv=|u||v|cosθ and u×v=|u||v|sinθn^ where, θ is the angle between u and v and n^ is unit vector perpendicular to the plane of u and v.

Again,

|uv|2=|u|2|v|2cos2θ and 

|u×v|2=|u|2|v|2sin2θ=|u|2|v|2sin2θ

|uv|2+|u×v|2=|u|2|v|2(cos2θ+sin2θ)

=|u|2|v|2

(ii) |u+v+(u×v)|2

=|u+v|2+|u×v|2+2(u+v)(u×v)=|u|2+|v|2+2uv+|u×v|2+0

[u×v is perpendicular to the plane of u and v]

|u+v+(u×v)|2+|1uv|2

=|u|2+|v|2+2uv+|u×v|2+12uv+|uv|2

=|u|2+|v|2+1+|u|2|v|2

[from Eq. (i)]

=|u|2(1+|v|2)+(1+|v|2)=(1+|v|2)(1+|u|2)



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक