Vectors 2 Question 2

2. Let $\alpha \in R$ and the three vectors $\mathbf{a}=\alpha \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \mathbf{b}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\alpha \hat{\mathbf{k}}$ and $\mathbf{c}=\alpha \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$. Then, the set $ S = {\alpha: \mathbf{a}, \mathbf{b} \quad \text {and} \quad \mathbf{c}}$ are coplanar

(2019 Main, 12 April II)

(a) is singleton

(b) is empty

(c) contains exactly two positive numbers

(d) contains exactly two numbers only one of which is positive

Show Answer

Answer:

Correct Answer: 2. (b)

Solution:

  1. Given three vectors are

$$ \begin{aligned} & \mathbf{a}=\alpha \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}} \\ & \mathbf{b}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\alpha \hat{\mathbf{k}} \\ & \text { and } \quad \mathbf{c}=\alpha \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}} \\ & \text { Clearly, }[\mathbf{a} \mathbf{b} \mathbf{c}]=\left|\begin{array}{ccc} \alpha & 1 & 3 \\ 2 & 1 & -\alpha \\ \alpha & -2 & 3 \end{array}\right| \\ & =\alpha(3-2 \alpha)-1\left(6+\alpha^{2}\right)+3(-4-\alpha) \\ & =-3 \alpha^{2}-18=-3\left(\alpha^{2}+6\right) \end{aligned} $$

$\because$ There is no value of $\alpha$ for which $-3\left(\alpha^{2}+6\right)$ becomes zero, so $=\left|\begin{array}{ccc}\alpha & 1 & 3 \ 2 & 1 & -\alpha \ \alpha & -2 & 3\end{array}\right|[\mathbf{a} \mathbf{b} \mathbf{c}] \neq 0$

$\Rightarrow$ vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are not coplanar for any value $\alpha \in R$.

So, the $\operatorname{set} S={\alpha: \mathbf{a}, \mathbf{b} \quad \text {and} \quad \mathbf{c}}$ are coplanar is empty set.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक