Vectors 2 Question 15

15. If the triangle $P Q R$ varies, then the minimum value of $\cos (P+Q)+\cos (Q+R)+\cos (R+P)$ is

(a) $-\frac{3}{2}$

(b) $\frac{3}{2}$

(c) $\frac{5}{3}$

(d) $-\frac{5}{3}$

Show Answer

Answer:

Correct Answer: 15. $\vec{a}$

Solution:

  1. $\cos (P+Q)+\cos (Q+R)+\cos (R+P)$

$$ =-(\cos R+\cos P+\cos Q) $$

Max. of $\cos P+\cos Q+\cos R=\frac{3}{2}$

Min. of $\cos (P+Q)+\cos (Q+R)+\cos (R+P)$ is $=-\frac{3}{2}$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक