Vectors 2 Question 14

14. Let the vectors $\overrightarrow{\mathbf{P Q}}, \overrightarrow{\mathbf{Q R}}, \overrightarrow{\mathbf{R S}}, \overrightarrow{\mathbf{S T}}, \overrightarrow{\mathbf{T U}}$ and $\overrightarrow{\mathbf{U P}}$ represent the sides of a regular hexagon.

Statement I $\overrightarrow{\mathbf{P Q}} \times(\overrightarrow{\mathbf{R S}}+\overrightarrow{\mathbf{S T}}) \neq \overrightarrow{\mathbf{0}}$.

because

Statement II $\overrightarrow{\mathbf{P Q}} \times \overrightarrow{\mathbf{R S}}=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{P Q}} \times \overrightarrow{\mathbf{S T}} \neq \overrightarrow{\mathbf{0}}$

(2007, 3M)

Show Answer

Answer:

Correct Answer: 14. (c)

Solution:

  1. Since, $\overrightarrow{\mathbf{P Q}}$ is not parallel to $\overrightarrow{\mathbf{T R}}$.

$\because \overrightarrow{\mathbf{T R}}$ is resultant of $\overrightarrow{\mathbf{R S}}$ and $\overrightarrow{\mathbf{S T}}$ vectors. $\Rightarrow \overrightarrow{\mathbf{P Q}} \times(\overrightarrow{\mathbf{R S}}+\overrightarrow{\mathbf{S T}}) \neq \overrightarrow{\mathbf{0}}$.

But for Statement II, we have

$$ \overrightarrow{PQ} \times \overrightarrow{RS}=\overrightarrow{\mathbf{0}} $$

which is not possible as $\overrightarrow{\mathbf{P Q}}$ not parallel to $\overrightarrow{\mathbf{R S}}$.

Hence, Statement I is true and Statement II is false.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक