Vectors 1 Question 12

13. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}} _1$ are two unit vectors such that $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ and $5 \overrightarrow{\mathbf{a}}-4 \overrightarrow{\mathbf{b}}$, are perpendicular to each other, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is

$(2002,1 M)$

(a) $45^{\circ}$

(b) $60^{\circ}$

(c) $\cos ^{-1}\left(\frac{1}{3}\right)$

(d) $\cos ^{-1}\left(\frac{2}{7}\right)$

Show Answer

Answer:

Correct Answer: 13. $I=\frac{\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}+\gamma \overrightarrow{\mathbf{c}}}{\alpha+\beta+\gamma}$

Solution:

  1. Since,

$$ (\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}) \cdot(5 \overrightarrow{\mathbf{a}}-4 \overrightarrow{\mathbf{a}})=0 $$

$$ \begin{aligned} & \Rightarrow \quad 5|\overrightarrow{\mathbf{a}}|^{2}+6 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-8|\overrightarrow{\mathbf{b}}|^{2}=0 \\ & \Rightarrow \quad 6 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=3 \quad[\because|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=1] \\ & \Rightarrow \quad \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ} \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक