Trigonometrical Ratios and Identities 3 Question 2

3. If $A>0, B>0$ and $A+B=\pi / 3$, then the maximum value of $\tan A \tan B$ is

(1993)

Analytical & Descriptive Question

Show Answer

Answer:

Correct Answer: 3. $\frac{1}{3}$

Solution:

  1. Since, $A+B=\frac{\pi}{3}$ and, we know product of term is maximum, when values are equal.

$\therefore(\tan A \cdot \tan B)$ is maximum.

When $A=B=\pi / 6$

i.e.

$$ y=\tan \frac{\pi}{6} \tan \frac{\pi}{6}=\frac{1}{3} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक