Trigonometrical Ratios and Identities 3 Question 1

2. Let θ0,π4 and t1=(tanθ)tanθ,t2=(tanθ)cotθ, t3=(cotθ)tanθ and t4=(cotθ)cotθ, then

(2006, 3M)

True/False

Show Answer

Answer:

Correct Answer: 2. (b)

Solution:

  1. As when θ0,π4,tanθ<cotθ

Since, tanθ<1 and cotθ>1

(tanθ)cotθ<1 and (cotθ)tanθ>1

t4>t1 which only holds in (b). Therefore, (b) is the answer.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक