Trigonometrical Ratios and Identities 2 Question 2

2. If $\alpha+\beta+\gamma=2 \pi$, then

$(1979,2 M)$

(a) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$

(b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{Y}{2}+\tan \frac{Y}{2} \tan \frac{\alpha}{2}=1$

(c) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=-\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$

(d) None of the above

Fill in the Blank

Show Answer

Answer:

Correct Answer: 2. (a)

Solution:

  1. Since, $\quad \frac{\alpha}{2}+\frac{\beta}{2}=\pi-\frac{\gamma}{2}$

$$ \therefore \quad \tan \frac{\alpha}{2}+\frac{\beta}{2}=\tan \pi-\frac{\gamma}{2} $$

$$ \Rightarrow \quad \frac{\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}}{1-\tan \frac{\alpha}{2} \tan \frac{\beta}{2}}=-\tan \frac{\gamma}{2} $$

$$ \Rightarrow \tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक