Trigonometrical Ratios and Identities 1 Question 9

9. The number of ordered pairs $(\alpha, \beta)$, where $\alpha, \beta \in(-\pi, \pi)$ satisfying $\cos (\alpha-\beta)=1$ and $\cos (\alpha+\beta)=\frac{1}{e}$ is

(2005, 1M)

(a) 0

(b) 1

(c) 2

(d) 4

Show Answer

Answer:

Correct Answer: 9. (b)

Solution:

  1. Since, $\quad \cos (\alpha-\beta)=1$

$\begin{array}{lrr}\Rightarrow & \alpha-\beta=2 n \pi & \ \text { But } & -2 \pi<\alpha-\beta<2 \pi & {[\text { as } \alpha, \beta \in(-\pi, \pi)]} \ \therefore & \alpha-\beta=0 & \text {…(i) } \ \text { Given, } & \cos (\alpha+\beta)=\frac{1}{e}\end{array}$

$\Rightarrow \cos 2 \alpha=\frac{1}{e}<1$, which is true for four values of $\alpha$.

[as $-2 \pi<2 \alpha<2 \pi]$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक