Trigonometrical Ratios and Identities 1 Question 7

7. For any θπ4,π2, the expression 3(sinθcosθ)4+6(sinθ+cosθ)2+4sin6θ equals (2019 Main, 9 Jan I) (a) 134cos4θ+2sin2θcos2θ

(b) 134cos2θ+6cos4θ

(c) 134cos2θ+6sin2θcos2θ

(d) 134cos6θ

Show Answer

Answer:

Correct Answer: 7. 18

(c)

Solution:

  1. Given expression

=3(sinθcosθ)4+6(sinθ+cosθ)2+4sin6θ =3((sinθcosθ)2)2+6(sinθ+cosθ)2+4(sin2θ)3

=3(1sin2θ)2+6(1+sin2θ)+4(1cos2θ)3

[1+sin2θ=(cosθ+sinθ)2

and 1sin2θ=(cosθsinθ)2]

=3(12+sin22θ2sin2θ)+6(1+sin2θ)

+4(1cos6θ3cos2θ+3cos4θ)

[(ab)2=a2+b22ab

and (ab)3=a3b33a2b+3ab2]

=3+3sin22θ6sin2θ+6+6sin2θ+4

4cos6θ12cos2θ+12cos4θ

=13+3sin22θ4cos6θ12cos2θ+12cos4θ

=13+3(2sinθcosθ)24cos6θ12cos2θ(1cos2θ)

=13+12sin2θcos2θ4cos6θ12cos2θsin2θ

=134cos6θ



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक