Trigonometrical Ratios and Identities 1 Question 6

6. The value of $\cos \frac{\pi}{2^{2}} \cdot \cos \frac{\pi}{2^{3}} \ldots \ldots \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$ is

(a) $\frac{1}{1024}$

(b) $\frac{1}{2}$

(c) $\frac{1}{512}$

(d) $\frac{1}{256}$

Show Answer

Answer:

Correct Answer: 6. (a, b, c, d)

Solution:

  1. We know that, $\cos \alpha \cdot \cos (2 \alpha) \cos \left(2^{2} \alpha\right) \ldots \cos \left(2^{n-1} \alpha\right)=\frac{\sin \left(2^{n} \alpha\right)}{2^{n} \sin \alpha}$

$\therefore \cos \frac{\pi}{2^{2}} \cdot \cos \frac{\pi}{2^{3}} \ldots \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$

$=\frac{\sin \frac{\pi}{2^{10}} 2^{9}}{2^{9} \sin \frac{\pi}{2^{10}}} \sin \frac{\pi}{2^{10}} \quad\left[\because\right.$ here,$\alpha=\frac{\pi}{2^{10}}$ and $\left.n=9\right]$

$=\frac{1}{2^{9}} \sin \frac{\pi}{2}=\frac{1}{2^{9}}=\frac{1}{512}$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक