Trigonometrical Ratios and Identities 1 Question 5

5. Let fk(x)=1k(sinkx+coskx) for k=1,2,3. Then, for all xR, the value of f4(x)f6(x) is equal to

(a) 112

(b) 512

(c) 112

(d) 14

(2019 Main, 11 Jan I)

Show Answer

Answer:

Correct Answer: 5. (b)

Solution:

  1. We have,

fk(x)=1k(sinkx+coskx),k=1,2,3,f4(x)=14(sin4x+cos4x)=14((sin2x+cos2x)22sin2xcos2x)=14112(sin2x)2=1418sin22x

and f6(x)=16(sin6x+cos6x)

$$ =\frac{1}{6}{\left(\sin ^{2} x+\cos ^{2} x\right)^{3}-3 \sin ^{2} x \cos ^{2} x\right. $$

Extra close brace or missing open brace

=16134(2sinxcosx)2=1618sin22x

Now, f4(x)f6(x)=1416=3212=112



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक