Trigonometrical Ratios and Identities 1 Question 24

24. The value of

$\sin \frac{\pi}{14} \cdot \sin \frac{3 \pi}{14} \cdot \sin \frac{5 \pi}{14} \cdot \sin \frac{7 \pi}{14} \cdot \sin \frac{9 \pi}{14} \cdot \sin \frac{11 \pi}{14} \cdot \sin \frac{13 \pi}{14}$

is equal to

(1991, 2M)

Analytical & Descriptive Questions

Show Answer

Solution:

  1. $\sin \frac{\pi}{14} \cdot \sin \frac{3 \pi}{14} \cdot \sin \frac{5 \pi}{14} \cdot \sin \frac{7 \pi}{14} \cdot \sin \frac{9 \pi}{14} \cdot \sin \frac{11 \pi}{14} \cdot \sin \frac{13 \pi}{14}$ $=\sin \frac{\pi}{14} \cdot \sin \frac{3 \pi}{14} \cdot \sin \frac{5 \pi}{14} \cdot \sin \pi-\frac{5 \pi}{14}$ $\cdot \sin \pi-\frac{3 \pi}{14} \cdot \sin \pi-\frac{\pi}{14}$

$=\sin ^{2} \frac{\pi}{14} \cdot \sin ^{2} \frac{3 \pi}{14} \cdot \sin ^{2} \frac{5 \pi}{14}=\sin \frac{\pi}{14} \cdot \sin \frac{3 \pi}{14} \cdot \sin \frac{5 \pi}{14}^{2}$

$=\cos \frac{\pi}{2}-\frac{\pi}{14} \cdot \cos \frac{\pi}{2}-\frac{3 \pi}{14} \cdot \cos \frac{\pi}{2}-\frac{5 \pi}{14}$

$=\cos \frac{3 \pi}{7} \cdot \cos \frac{2 \pi}{7} \cdot \cos \frac{\pi}{7}^{2}$

$=-\cos \frac{\pi}{7} \cdot \cos \frac{2 \pi}{7} \cdot \cos \frac{4 \pi}{7}{ }^{2}$

$=-\frac{\sin 2^{3} \pi / 7}{2^{3} \cdot \sin \pi / 7}$

$=-\frac{1}{8} \cdot \frac{\sin 8 \pi / 7}{\sin \pi / 7}^{2} \quad \because \sin \frac{8 \pi}{7}=\sin \pi+\frac{\pi}{7}=-\sin \frac{\pi}{7}$

$$ =1 / 64 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक