Trigonometrical Ratios and Identities 1 Question 21

21. For a positive integer n, let

fn(θ)=tanθ2(1+secθ)(1+sec2θ)(1+sec22θ)(1+sec2nθ), then 

(1999, 3M)

(a) f2π16=1

(b) f3π32=1

(c) f4π64=1

(d) f5π128=1

Match the Column

Match the conditions/expressions in Column I with values in Column II.

Show Answer

Solution:

  1. NOTE Multiplicative loop is very important approach in IIT Mathematics.

tanθ2(1+secθ)=sinθ/2cosθ/21+1cosθ=(sinθ/2)2cos2θ/2(cosθ/2)cosθ=(2sinθ/2)cosθ/2cosθ=sinθcosθ=tanθfn(θ)=(tanθ/2)(1+secθ)(1+sec2θ)(1+sec22θ)(1+sec2nθ)=(tanθ)(1+sec2θ)(1+sec22θ)(1+sec2nθ)=tan2θ(1+sec22θ)(1+sec2nθ)=tan(2nθ)

Now, f2π16=tan22π16=tanπ4=1

Therefore, (a) is the answer.

f3π32=tan23π32=tanπ4=1

Therefore, (b) is the answer.

f4π64=tan24π64=tanπ4=1

Therefore, (c) is the answer.

f5π128=tan25π128=tanπ4=1

Therefore, (d) is the answer.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक