Trigonometrical Ratios and Identities 1 Question 20

20. If $\frac{\sin ^{4} x}{2}+\frac{\cos ^{4} x}{3}=\frac{1}{5}$, then

(2009)

(a) $\tan ^{2} x=\frac{2}{3}$

(b) $\frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27}=\frac{1}{125}$

(c) $\tan ^{2} x=\frac{1}{3}$

(d) $\frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27}=\frac{2}{125}$

Show Answer

Solution:

  1. $\frac{\sin ^{4} x}{2}+\frac{\cos ^{4} x}{3}=\frac{1}{5} \Rightarrow \frac{\sin ^{4} x}{2}+\frac{\left(1-\sin ^{2} x\right)^{2}}{3}=\frac{1}{5}$

$\Rightarrow \quad \frac{\sin ^{4} x}{2}+\frac{1+\sin ^{4} x-2 \sin ^{2} x}{3}=\frac{1}{5}$

$\Rightarrow \quad 5 \sin ^{4} x-4 \sin ^{2} x+2=\frac{6}{5}$

$\Rightarrow \quad 25 \sin ^{4} x-20 \sin ^{2} x+4=0$

$$ \Rightarrow \quad\left(5 \sin ^{2} x-2\right)^{2}=0 $$

$$ \begin{array}{rlrl} \Rightarrow & \sin ^{2} x & =\frac{2}{5} \\ \cos ^{2} x & =\frac{3}{5}, \tan ^{2} x=\frac{2}{3} \\ \therefore \quad & \frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27} & =\frac{1}{125} \end{array} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक