Trigonometrical Ratios and Identities 1 Question 12

12. $3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)$ equals

$(1995,2 M)$

(a) 11

(b) 12

(c) 13

(d) 14

Show Answer

Answer:

Correct Answer: 12. (c)

Solution:

  1. Given expression $=$

$3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)$

$=3(1-\sin 2 x)^{2}+6(1+\sin 2 x)+4{\left(\sin ^{2} x+\cos ^{2} x\right)^{3}\right.$ $\left.-3 \sin ^{2} x \cos ^{2} x\left(\sin ^{2} x+\cos ^{2} x\right) }$

$=3\left(1-2 \sin 2 x+\sin ^{2} 2 x\right)+6+6 \sin 2 x$

$$ +4\left(1-3 \sin ^{2} x \cos ^{2} x\right) $$

$=3\left(1-2 \sin 2 x+\sin ^{2} 2 x+2+2 \sin 2 x\right)+4 \quad 1-\frac{3}{4} \cdot \sin ^{2} 2 x$

$=13+3 \sin ^{2} 2 x-3 \sin ^{2} 2 x=13$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक