Trigonometrical Equations 3 Question 9

10. $\sec ^{2} \theta=\frac{4 x y}{(x+y)^{2}}$ is true if and only if

(1996, 1M)

(a) $x=y \neq 0$

(b) $x=y, x \neq 0$

(c) $x=y$

(d) $x \neq 0, y \neq 0$

Show Answer

Answer:

Correct Answer: 10. (a, b)

Solution:

  1. We know that, $\sec ^{2} \theta \geq 1$

$$ \begin{array}{lc} \Rightarrow & \frac{4 x y}{(x+y)^{2}} \geq 1 \\ \Rightarrow & 4 x y \geq(x+y)^{2} \\ \Rightarrow & (x+y)^{2}-4 x y \leq 0 \\ \Rightarrow & (x-y)^{2} \leq 0 \\ \Rightarrow & x-y=0 \\ \Rightarrow & x=y \end{array} $$

Therefore, $x+y=2 x$

[add $x$ both sides]

But $x+y \neq 0$ since it lies in the denominator,

$\Rightarrow \quad 2 x \neq 0$

$\Rightarrow \quad x \neq 0$

Hence, $x=y, x \neq 0$ is the answer.

Therefore, (a) and (b) are the answers.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक