Trigonometrical Equations 2 Question 3

3. Let θ,φ[0,2π] be such that 2cosθ(1sinφ)=sin2θ tanθ2+cotθ2cosφ1,tan(2πθ)>0 and 1<sinθ<32. Then, φ cannot satisfy

(2012)

(a) 0<φ<π2

(b) π2<φ<4π3

(c) 4π3<φ<3π2

(d) 3π2<φ<2π

Show Answer

Answer:

Correct Answer: 3. (a,c,d)

Solution:

  1. PLAN It is based on range of sinx, i.e. [1,1] and the internal for a<x<b.

Description of Situation As θ,φ[0,2π] and tan(2πθ)>0,1<sinθ<32 tan(2πθ)>0 tanθ>0

θII or IV quadrant.

Also, 1<sinθ<32

4π3<θ<5π3 but θ II or IV quadrant

3π2<θ<5π3

Here, 2cosθ(1sinφ)=sin2θtanθ2+cotθ2cosφ1

2cosθ2cosθsinφ=sin2θsin2θ2+cos2θ2sinθ2cosθ2cosφ1

2cosθ2cosθsinφ=2sin2θ1sinθcosφ1

2cosθ+1=2sinφcosθ+2sinθcosφ

2cosθ+1=2sin(θ+φ)

From Eq. (i), 3π2<θ<5π3

2cosθ+1(1,2)

1<2sin(θ+φ)<2

12<sin(θ+φ)<1

π6<θ+φ<5π6

or 13π6<θ+φ<17π6

π6θ<φ<5π6θ

or 13π6θ<φ<17π6θ

φ3π2,2π3 or 2π3,7π6, as θ3π2,5π3



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक