Trigonometrical Equations 1 Question 16

16. The general solution of $\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is

(1989, 2M)

(a) $n \pi+\frac{\pi}{8}$

(b) $\frac{n \pi}{2}+\frac{\pi}{8}$

(c) $(-1)^{n} \frac{n \pi}{2}+\frac{\pi}{8}$

(d) $2 n \pi+\cos ^{-1} \frac{3}{2}$

Show Answer

Answer:

Correct Answer: 16. (c)

Solution:

  1. Given, $\sin 3 x+\sin x-3 \sin 2 x=\cos 3 x+\cos x-3 \cos 2 x$

$\Rightarrow 2 \sin 2 x \cos x-3 \sin 2 x=2 \cos 2 x \cos x-3 \cos 2 x$

$\Rightarrow \quad \sin 2 x(2 \cos x-3)=\cos 2 x(2 \cos x-3)$

$$ \begin{array}{rlrl} \Rightarrow & & \sin 2 x & =\cos 2 x \\ \Rightarrow & \tan 2 x & =1 \\ \Rightarrow & & 2 x & =n \pi+\frac{\pi}{4} \quad \Rightarrow \quad x=\frac{n \pi}{2}+\frac{\pi}{8} \end{array} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक