Trigonometrical Equations 1 Question 13

13. Let n be an odd integer. If sinnθ=r=0nbrsinrθ, for every value of θ, then

(1998, 2M)

(a) b0=1,b1=3

(b) b0=0,b1=n

(c) b0=1,b1=n

(d) b0=0,b1=n23n+3

Show Answer

Answer:

Correct Answer: 13. (c)

Solution:

  1. Given, sinnθ=r=0nbrsinrθ

Now, put θ=0, we get 0=b0

sinnθ=r=1nbrsinrθ

sinnθsinθ=r=1nbr(sinθ)r1

Taking limit as θ0

limθ0sinnθsinθ=limθ0r=1nbr(sinθ)r1

limθ0nθsinnθnθθsinθθ=b1+0+0+0+

[ other values becomes zero for higher powers of sinθ ]

n11=b1b1=n



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक