Trigonometrical Equations 1 Question 11

11. Let S=x(π,π):x0,±π2. The sum of all distinct solutions of the equation 3secx+cosecx +2(tanxcotx)=0 in the set S is equal to

(2016 Adv.)

(a) 7π9

(b) 2π9

(c) 0

(d) 5π9

Show Answer

Answer:

Correct Answer: 11. (d)

Solution:

  1. Given, 3secx+cosecx+2(tanxcotx)=0,

(π<x<π)0,±π/2

3sinx+cosx+2(sin2xcos2x)=0

3sinx+cosx2cos2x=0

Multiplying and dividing by a2+b2, i.e. 3+1=2, we get

232sinx+12cosx2cos2x=0

cosxcosπ3+sinxsinπ3cos2x=0

cosxπ3=cos2x2x=2nπ±xπ3 since, cosθ=cosα=2nπ±α2x=2nπ+xπ3 or x=2nπx+π3x=2nππ3 or 3x=2nπ+π3x=2nπ3+π9

x=π3 or x=π9,5π9,7π9

Now, sum of all distinct solutions

=π3+π95π9+7π9=0



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक