Theory of Equations 5 Question 2

2. All the pairs $(x, y)$ that satisfy the inequality $2^{\sqrt{\sin ^{2} x-2 \sin x+5}} \cdot \frac{1}{4^{\sin ^{2} y}} \leq 1$ also satisfy the equation

(2019 Main, 10 April I)

(a) $2|\sin x|=3 \sin y$

(b) $\sin x=|\sin y|$

(c) $\sin x=2 \sin y$

(d) $2 \sin x=\sin y$

Show Answer

Solution:

  1. Given, inequality is

$$ \begin{aligned} & 2^{\sqrt{\sin ^{2} x-2 \sin x+5}} \cdot \frac{1}{4^{\sin ^{2} y}} \leq 1 \\ & \Rightarrow 2^{\sqrt{(\sin x-1)^{2}+4}} \cdot 2^{-2 \sin ^{2} y} \leq 1 \\ & \Rightarrow 2^{\sqrt{(\sin x-1)^{2}+4}} \leq 2^{2 \sin ^{2} y} \\ & \Rightarrow \sqrt{(\sin x-1)^{2}+4} \leq 2 \sin ^{2} y \\ & \quad\left[\text { if } a>1 \text { and } a^{m} \leq a^{n} \Rightarrow m \leq n\right] \\ & \because \text { Range of } \sqrt{(\sin x-1)^{2}+4} \text { is }[2,2 \sqrt{2}] \\ & \text { and range of } 2 \sin ^{2} y \text { is }[0,2] . \end{aligned} $$

$\therefore$ The above inequality holds, iff

$$ \begin{aligned} & \sqrt{(\sin x-1)^{2}+4}=2=2 \sin ^{2} y \\ & \Rightarrow \sin x=1 \text { and } \sin ^{2} y=1 \\ & \Rightarrow \sin x=|\sin y| \end{aligned} $$

[from the options]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक