Theory of Equations 4 Question 5

6. If $b>a$, then the equation $(x-a)(x-b)-1=0$ has

(a) both roots in $(a, b)$

(2000, 1M)

(b) both roots in $(-\infty, a)$

(c) both roots in $(b,+\infty)$

(d) one root in $(-\infty, a)$ and the other in $(b, \infty)$

Show Answer

Solution:

From graph, it is clear that one of the roots of $(x-a)(x-b)-1=0$ lies in $(-\infty, a)$ and other lies in $(b, \infty)$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक