Theory of Equations 4 Question 1

1. Let P(4,4) and Q(9,6) be two points on the parabola, y2=4x and let X be any point on the arc POQ of this parabola, where O is the vertex of this parabola, such that the area of PXQ is maximum. Then, this maximum area (in sq units) is

(2019 Main, 12 Jan I)

(a) 1252

(b) 752

(c) 6254

(d) 1254

Show Answer

Solution:

  1. Given parabola is y2=4x,

Since, X lies on the parabola, so let the coordinates of X be (t2,2t). Thus, the coordinates of the vertices of the triangle PXQ are P(4,4),X(t2,2t) and Q(9,6).

Area of PXQ=12||441 t22t1 961||

=12[4(2t6)+4(t29)+1(6t218t]=12|[8t24+4t236+6t218t]|=|5t25t30|=|5(t+2)(t3)|

Now, as X is any point on the arc POQ of the parabola, therefore ordinate of point X,2t(4,6)t(2,3).

Area of PXQ=5(t+2)(t3)=5t2+5t+30

[|xa|=(xa), if x<a]

The maximum area (in square units)

=254(5)(30)4(5)=1254

[ Maximum value of quadratic expression

ax2+bx+c, when a<0 is D4a]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक