Theory of Equations 3 Question 2

2. A value of b for which the equations x2+bx1=0, x2+x+b=0 have one root in common is

(2011)

(a) 2

(b) i3

(c) i5

(d) 2

Fill in the Blanks

Show Answer

Solution:

  1. Since, ax2+bx+c=0 has roots α and β.

α+β=b/a and αβ=c/a

Now, a3x2+abcx+c3=0

On dividing the equation by c2, we get

a3c2x2+abcxc2+c3c2=0aaxc+baxc+c=0axc=α,β are the roots x=caα,caβ are the roots 

x=αβα,αββ are the roots x=α2β,αβ2 are the roots 

Divide the Eq. (i) by a3, we get

x2+bacax+ca=0x2(α+β)(αβ)x+(αβ)3=0x2α2βxαβ2x+(αβ)3=0x(xα2β)αβ2(xα2β)=0(xα2β)(xαβ2)=0

x=α2β,αβ2 which is the required answer.

Alternate Solution

 Since, a3x2+abcx+c3=0x=abc±(abc)24a3c32a3x=(b/a)(c/a)±(b/a)2(c/a)24(c/a)32x=(α+β)(αβ)±(α+β)2(αβ)24(αβ)32x=(α+β)(αβ)±αβ(α+β)24αβ2x=αβ(α+β)±(αβ)22x=αβ(α+β)±(αβ)2x=αβα+β+αβ2,α+βα+β2x=αβ2α2,2β2x=α2β,αβ2 which is the required answer. 



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक