Theory of Equations 1 Question 8
9. If are the lengths of the sides of a triangle, then cannot be equal to
(a)
(b)
(c)
(d)
Show Answer
Solution:
- Let
and
We know that, in a triangle sum of 2 sides is always greater than the third side.
Now,
Similarly,
$$ \begin{aligned} & \Rightarrow \quad 5 r+5 r^{2}>5 \ & \Rightarrow \quad r^{2}+r-1>0 \ & r-\frac{-1-\sqrt{5}}{2} \quad r-\frac{-1+\sqrt{5}}{2}>0 \ & \because r^{2}+r-1=0 \Rightarrow r=\frac{-1 \pm \sqrt{1+4}}{2}=\frac{-1 \pm \sqrt{5}}{2} \ & \Rightarrow \quad r \in-\infty, \frac{-1-\sqrt{5}}{2} \cup \frac{-1+\sqrt{5}}{2}, \infty \ & \begin{array}{ccc}
- & - & + \ \hline \frac{-1-\sqrt{5}}{2} & & \frac{-1+\sqrt{5}}{2} \end{array} \ & \text { and } \quad c+a>b \ & \Rightarrow \quad 5 r^{2}+5>5 r \ & \Rightarrow \quad r^{2}-r+1>0 \ & \Rightarrow r^{2}-2 \cdot \frac{1}{2} r+\frac{1}{2}^{2}+1-\frac{1}{2}^{2}>0 \ & \Rightarrow \quad r-\frac{1}{2}^{2}+\frac{3}{4}>0 \ & \Rightarrow \quad r \in R \end{aligned} $$
From Eqs. (i), (ii) and (iii), we get
and