Theory of Equations 1 Question 8

9. If 5,5r,5r2 are the lengths of the sides of a triangle, then r cannot be equal to

(a) 54

(b) 74

(c) 32

(d) 34

Show Answer

Solution:

  1. Let a=5,b=5r and c=5r2

We know that, in a triangle sum of 2 sides is always greater than the third side.

a+b>c;b+c>a and c+a>b

Now, a+b>c

5+5r>5r25r25r5<0

r2r1<0

r152r1+52<0

[ roots of ax2+bx+c=0 are given by

x=b±b24ac2a and r2r1=0r=1±1+42=1±52]

r152,1+5211521+52

Similarly, b+c>a

$$ \begin{aligned} & \Rightarrow \quad 5 r+5 r^{2}>5 \ & \Rightarrow \quad r^{2}+r-1>0 \ & r-\frac{-1-\sqrt{5}}{2} \quad r-\frac{-1+\sqrt{5}}{2}>0 \ & \because r^{2}+r-1=0 \Rightarrow r=\frac{-1 \pm \sqrt{1+4}}{2}=\frac{-1 \pm \sqrt{5}}{2} \ & \Rightarrow \quad r \in-\infty, \frac{-1-\sqrt{5}}{2} \cup \frac{-1+\sqrt{5}}{2}, \infty \ & \begin{array}{ccc}

  • & - & + \ \hline \frac{-1-\sqrt{5}}{2} & & \frac{-1+\sqrt{5}}{2} \end{array} \ & \text { and } \quad c+a>b \ & \Rightarrow \quad 5 r^{2}+5>5 r \ & \Rightarrow \quad r^{2}-r+1>0 \ & \Rightarrow r^{2}-2 \cdot \frac{1}{2} r+\frac{1}{2}^{2}+1-\frac{1}{2}^{2}>0 \ & \Rightarrow \quad r-\frac{1}{2}^{2}+\frac{3}{4}>0 \ & \Rightarrow \quad r \in R \end{aligned} $$

From Eqs. (i), (ii) and (iii), we get

r1+52,1+52

and 74 is the only value that does not satisfy.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक