Theory of Equations 1 Question 52

53. If one root of the quadratic equation ax2+bx+c=0 is equal to the nth power of the other, then show that

(acn)1n+1+(anc)1n+1+b=0

(1983, 2M)

Show Answer

Solution:

  1. Let α,β are roots of ax2+bx+c=0

Given, α=βn

αβ=caβn+1=caβ=ca1/(n+1)

It must satisfy ax2+bx+c=0

 i.e. aca2/(n+1)+bca1/(n+1)+c=0ac2/(n+1)a2/(n+1)+bc1/(n+1)a1/(n+1)+c=0c1/(n+1)a1/(n+1)ac1/(n+1)a1/(n+1)+b+ca1/(n+1)c1/(n+1)=0an/(n+1)c1/(n+1)+b+cn/(n+1)a1/(n+1)=0(anc)1/(n+1)+(cna)1/(n+1)+b=0



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक