Theory of Equations 1 Question 50

51. For $a \leq 0$, determine all real roots of the equation

$$ x^{2}-2 a|x-a|-3 a^{2}=0 $$

Show Answer

Solution:

  1. Here, $a \leq 0$

Given, $\quad x^{2}-2 a|x-a|-3 a^{2}=0$

Case I When $x \geq a$

$$ \begin{aligned} \Rightarrow & & x^{2}-2 a(x-a)-3 a^{2} & =0 \\ & \Rightarrow & x^{2}-2 a x-a^{2} & =0 \\ & \Rightarrow & x & =a \pm \sqrt{2} a \end{aligned} $$

[as $a(1+\sqrt{2})<a$ and $a(1-\sqrt{2})>a$ ]

$\therefore$ Neglecting $x=a(1+\sqrt{2})$ as $x \geq a$

$$ \Rightarrow \quad x=a(1-\sqrt{2}) $$

Case II When $x<a \Rightarrow x^{2}+2 a(x-a)-3 a^{2}=0$

$$ \Rightarrow \quad x^{2}+2 a x-5 a^{2}=0 \Rightarrow x=-a \pm \sqrt{6} a $$

$$ \text { [as } a(\sqrt{6}-1)<a \text { and } a(-1-\sqrt{6})>a \text { ] } $$

$\therefore$ Neglecting $x=a(-1-\sqrt{6}) \Rightarrow x=a(\sqrt{6}-1)$

From Eqs. (i) and (ii), we get

$$ x={a(1-\sqrt{2}), a(\sqrt{6}-1)} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक