Theory of Equations 1 Question 5

6. The number of integral values of m for which the quadratic expression, (1+2m)x22(1+3m) x+4(1+m),xR, is always positive, is

(a) 6

(b) 8

(c) 7

(d) 3

Show Answer

Solution:

  1. The quadratic expression

ax2+bx+c,xR is always positive,

if a>0 and D<0.

So, the quadratic expression

(1+2m)x22(1+3m)x+4(1+m),xR will be

always positive, if 1+2m>0

and D=4(1+3m)24(2m+1)4(1+m)<0

From inequality Eq. (i), we get

m>12

From inequality Eq. (ii), we get

1+9m2+6m4(2m2+3m+1)<0m26m3<0[m(3+12)][m(312)]<0[m26m3=0m=6±36+122=3±12]

312<m<3+12

From inequalities Eqs. (iii) and (iv), the integral values of m are 0,1,2,3,4,5,6

Hence, the number of integral values of m is 7 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक